Guangdong WBE Instrument Technology Co., Ltd., abbreviated as WBE, was founded in 1995 and is headquartered in Dongguan, Guangdong Hong Kong Macao Greater Bay Area. It is a high-end testing instrument manufacturer. The company currently has over 12000 square meters of modern independent factories to meet various non-standard customized production needs, and has established five marketing service centers in Beijing, Chongqing, Xi'an, Suzhou, Dongguan and other places across the country, aiming to provide customers with more convenient and efficient services. Our products include various weather resistant environmental testing chambers, large-scale non-standard environmental testing chambers, chip packaging push-pull testing machines, and comprehensive mechanical and environmental non-standard testing machines.
push-pull testing machine, known in the industry as a bond tester, is a specialized instrument used to measure the mechanical strength of the tiny connections inside electronic and semiconductor devices. Its primary purpose is to perform quality control by applying precise push (shear) or pull (tensile) forces to these connections until they fail, thus determining their strength. Key applications include wire bond pull testing, where it hooks and pulls a wire to ensure it is properly attached; ball shear testing, where it pushes on a solder ball to test its adhesion to a circuit board pad; and die shear testing
push-pull testing machine requires a careful evaluation of your specific applications. First, identify the types of tests you need (e.g., wire pull, die shear, ball shear). This will determine the required test modules or heads. Second, determine the force ranges needed for each test. A machine used for fine gold wire will need a very sensitive low-force sensor, while a machine for large die shear will need a high-force capability. Look for a system with interchangeable load cell cartridges for maximum flexibility. Third, consider the level of automation and the required throughput. Manual or motorized stages may be sufficient for a lab, while a fully automated system might be needed for high-volume production. Finally, evaluate the software capabilities, ensuring it can perform the necessary analysis and generate reports that meet your quality standards. Consulting with an expert at WBE can help you navigate these options to configure the perfect push-pull testing machine
push-pull testing machine provides much more than just a peak force number; proper interpretation is key to process improvement. The numerical force value tells you the strength, but the failure mode tells you why it failed. For example, in a wire bond pull test, a "wire break" in the middle indicates a good, strong bond, while a "ball lift" (the entire bond lifts off the pad) points to a problem with the bonding surface or parameters. The software on a WBE machine helps operators log these JEDEC-standard failure modes. Analyzing the distribution of these modes, along with statistical data like the mean force and standard deviation (Cpk), gives engineers a complete picture of their process health. A high average strength with a low standard deviation and a desirable failure mode distribution is the hallmark of a stable, high-quality manufacturing process, all revealed by the data from a push-pull testing machine
push-pull testing machine, engineers can choose between two fundamental methods: destructive and non-destructive testing. Destructive testing is the most common method used for process control. It involves testing a sample of components to failure to determine the absolute maximum strength of the bonds. This provides valuable statistical data about the health and capability of the manufacturing process. Non-destructive testing, on the other hand, is used for 100% screening of very high-reliability devices, such as those used in military or space applications. In this test, the machine applies a proof force—a force that is significant but well below the expected breaking point—to every single wire bond. If a bond survives, it is certified as meeting a minimum strength requirement. WBE's push-pull testing machine
The main tests performed by a push-pull testing machine include wire bond pull testing (to check the strength of wire-to-pad bonds), ball shear testing (to test the integrity of solder balls in BGA packages), die shear testing (to measure the adhesion strength of a semiconductor die to its substrate), and various other micro-force tests like tweezer pull or stud pull for specific components.
A push-pull testing machine is essential for semiconductors because it directly validates the reliability of the packaging process. A single faulty wire bond or a weak die attachment can cause a catastrophic failure of an entire integrated circuit. These machines provide the data needed for process control, quality assurance, and compliance with industry standards like MIL-STD-883.
A destructive pull test, the more common type, pulls a wire until it breaks to measure its ultimate bond strength. A non-destructive pull test, performed on a push-pull testing machine, applies a predetermined force (lower than the expected breaking strength) to 100% of the wires on a high-reliability device. This ensures all bonds meet a minimum strength requirement without destroying them.
The force range for a push-pull testing machine is typically very low, often from a few grams-force (gf) up to 100 kilograms-force (kgf). Different test heads and load cell cartridges are used to achieve high accuracy within specific ranges, such as 0-100 gf for fine wire pull testing or 0-100 kgf for die shear testing.
By providing immediate feedback on the quality of the bonding or soldering process, a push-pull testing machine helps engineers identify and correct process issues quickly. If bond strengths start to trend lower, it can indicate a problem with a wire bonder, a contaminated surface, or an incorrect parameter. Addressing these issues in real-time prevents the production of large quantities of faulty devices, thus improving overall yield.
Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.
Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.
Planning to buy a walk-in test chamber? Our guide covers the critical decisions you'll need to make, offering a detailed comparison of construction types and design features.