Guangdong WBE Instrument Technology Co., Ltd., abbreviated as WBE, was founded in 1995 and is headquartered in Dongguan, Guangdong Hong Kong Macao Greater Bay Area. It is a high-end testing instrument manufacturer. The company currently has over 12000 square meters of modern independent factories to meet various non-standard customized production needs, and has established five marketing service centers in Beijing, Chongqing, Xi'an, Suzhou, Dongguan and other places across the country, aiming to provide customers with more convenient and efficient services. Our products include various weather resistant environmental testing chambers, large-scale non-standard environmental testing chambers, chip packaging push-pull testing machines, and comprehensive mechanical and environmental non-standard testing machines.
push-pull testing machine specifically for wire bond pull testing, several key specifications are critical. Force accuracy, typically expressed as a percentage of the reading, is paramount; look for high accuracy even at the low end of the sensor's range. The Z-axis resolution and accuracy determine how precisely the machine can control the position of the pull hook, which is vital for repeatability. The range of pull hooks available is also important, as you will need different sizes and shapes to accommodate various wire diameters and loop heights. The magnification and lighting of the optical system are crucial for allowing the operator to precisely position the hook on fine wires. Finally, the machine's ability to record not just the peak force but also the JEDEC-standard failure mode is essential for effective process diagnostics when using a push-pull testing machine
push-pull testing machine, known in the industry as a bond tester, is a specialized instrument used to measure the mechanical strength of the tiny connections inside electronic and semiconductor devices. Its primary purpose is to perform quality control by applying precise push (shear) or pull (tensile) forces to these connections until they fail, thus determining their strength. Key applications include wire bond pull testing, where it hooks and pulls a wire to ensure it is properly attached; ball shear testing, where it pushes on a solder ball to test its adhesion to a circuit board pad; and die shear testing
push-pull testing machine is absolutely essential for data integrity. Calibration is the process of comparing the machine's measurements to a known, traceable standard to ensure its accuracy. This should be performed on a regular schedule, typically annually, by a qualified technician. The process involves using a set of certified micro-weights to verify the accuracy of the load cell across its entire operating range. The positioning accuracy of the X, Y, and Z stages may also be verified using precision instruments. Without this regular verification, there is no guarantee that the force readings from the push-pull testing machine
push-pull testing machine. For example, Method 2011 specifies the procedures for wire bond pull testing, outlining the required forces, test conditions, and failure criteria for different wire types and diameters. Method 2019 covers die shear testing. Adherence to these standards is mandatory for suppliers in the defense industry. A high-quality push-pull testing machine
The main tests performed by a push-pull testing machine include wire bond pull testing (to check the strength of wire-to-pad bonds), ball shear testing (to test the integrity of solder balls in BGA packages), die shear testing (to measure the adhesion strength of a semiconductor die to its substrate), and various other micro-force tests like tweezer pull or stud pull for specific components.
A push-pull testing machine is essential for semiconductors because it directly validates the reliability of the packaging process. A single faulty wire bond or a weak die attachment can cause a catastrophic failure of an entire integrated circuit. These machines provide the data needed for process control, quality assurance, and compliance with industry standards like MIL-STD-883.
A destructive pull test, the more common type, pulls a wire until it breaks to measure its ultimate bond strength. A non-destructive pull test, performed on a push-pull testing machine, applies a predetermined force (lower than the expected breaking strength) to 100% of the wires on a high-reliability device. This ensures all bonds meet a minimum strength requirement without destroying them.
The force range for a push-pull testing machine is typically very low, often from a few grams-force (gf) up to 100 kilograms-force (kgf). Different test heads and load cell cartridges are used to achieve high accuracy within specific ranges, such as 0-100 gf for fine wire pull testing or 0-100 kgf for die shear testing.
By providing immediate feedback on the quality of the bonding or soldering process, a push-pull testing machine helps engineers identify and correct process issues quickly. If bond strengths start to trend lower, it can indicate a problem with a wire bonder, a contaminated surface, or an incorrect parameter. Addressing these issues in real-time prevents the production of large quantities of faulty devices, thus improving overall yield.
Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.
Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.
Planning to buy a walk-in test chamber? Our guide covers the critical decisions you'll need to make, offering a detailed comparison of construction types and design features.