Why a Push-Pull Testing Machine is Essential for Semiconductor QA.

Why a Push-Pull Testing Machine is Essential for Semiconductor QA.

A deep dive into a WBE push-pull testing machine reveals a suite of features designed for maximum performance and user efficiency. The system is built around a flexible, modular design, allowing users to quickly and easily switch between different test heads for wire pull, ball shear, or die shear applications. Our intelligent control software is a key differentiator, featuring an intuitive graphical user interface, pre-programmed test methods for common standards like MIL-STD-883, and powerful data analysis tools. It automatically records not just the peak force, but also the failure mode, and generates comprehensive reports for quality audits and process engineering. Advanced features like automatic wire detection, programmable Z-heights, and integrated high-magnification optics streamline the testing process, reducing operator fatigue and increasing throughput. Every component of a WBE push-pull testing machine is selected and integrated with one goal: to provide the most accurate, efficient, and reliable bond testing solution on the market.

Get A Quote

Global Service Network

From Dongguan to Worldwide, WBE ensures rapid response and localized support through its global service network.

Calibration & Compliance

Certified calibration and strict compliance services guarantee the accuracy and integrity of every testing result.

Technical Support & Training

Comprehensive support ecosystem covering installation, operation guidance, and professional training to empower your team.

Customized Testing Solutions

Tailor-made testing chambers and systems designed to meet diverse industry standards and specific customer applications.

24/7 Reliability & After-Sales Service

Around-the-clock service commitment with prompt troubleshooting and maintenance to keep your equipment running reliably.

about us

We Have The Best Solutions for Your Business

Originated From

Guangdong WBE Instrument Technology Co., Ltd., abbreviated as WBE, was founded in 1995 and is headquartered in Dongguan, Guangdong Hong Kong Macao Greater Bay Area. It is a high-end testing instrument manufacturer. The company currently has over 12000 square meters of modern independent factories to meet various non-standard customized production needs, and has established five marketing service centers in Beijing, Chongqing, Xi'an, Suzhou, Dongguan and other places across the country, aiming to provide customers with more convenient and efficient services. Our products include various weather resistant environmental testing chambers, large-scale non-standard environmental testing chambers, chip packaging push-pull testing machines, and comprehensive mechanical and environmental non-standard testing machines.

Learn More

Key Specifications for a Wire Bond Pull Tester

When evaluating a push-pull testing machine specifically for wire bond pull testing, several key specifications are critical. Force accuracy, typically expressed as a percentage of the reading, is paramount; look for high accuracy even at the low end of the sensor's range. The Z-axis resolution and accuracy determine how precisely the machine can control the position of the pull hook, which is vital for repeatability. The range of pull hooks available is also important, as you will need different sizes and shapes to accommodate various wire diameters and loop heights. The magnification and lighting of the optical system are crucial for allowing the operator to precisely position the hook on fine wires. Finally, the machine's ability to record not just the peak force but also the JEDEC-standard failure mode is essential for effective process diagnostics when using a push-pull testing machine.

What is a Push-Pull Testing Machine Used For?

A push-pull testing machine, known in the industry as a bond tester, is a specialized instrument used to measure the mechanical strength of the tiny connections inside electronic and semiconductor devices. Its primary purpose is to perform quality control by applying precise push (shear) or pull (tensile) forces to these connections until they fail, thus determining their strength. Key applications include wire bond pull testing, where it hooks and pulls a wire to ensure it is properly attached; ball shear testing, where it pushes on a solder ball to test its adhesion to a circuit board pad; and die shear testing, which measures the strength of the adhesive holding a silicon chip onto its package substrate. This data is critical for manufacturers to ensure their products are robust enough to withstand the stresses of assembly and everyday use, preventing field failures and ensuring long-term reliability.

The Difference Between Destructive and Non-Destructive Bond Testing

When using a push-pull testing machine, engineers can choose between two fundamental methods: destructive and non-destructive testing. Destructive testing is the most common method used for process control. It involves testing a sample of components to failure to determine the absolute maximum strength of the bonds. This provides valuable statistical data about the health and capability of the manufacturing process. Non-destructive testing, on the other hand, is used for 100% screening of very high-reliability devices, such as those used in military or space applications. In this test, the machine applies a proof force—a force that is significant but well below the expected breaking point—to every single wire bond. If a bond survives, it is certified as meeting a minimum strength requirement. WBE's push-pull testing machine can be precisely programmed to perform both types of tests accurately.

The Role of a Push-Pull Tester in LED and Optoelectronics

The reliability of LEDs and other optoelectronic devices is heavily dependent on the mechanical and thermal integrity of their internal structure. A push-pull testing machine is a key tool for quality assurance in this industry. For high-power LEDs, the quality of the die attach is critical for effective heat dissipation; poor adhesion can cause the device to overheat and fail prematurely. Die shear testing is used to verify the strength and voiding of this thermal interface. Wire bonds in LEDs are also subject to stress from thermal cycling, so wire bond pull testing is essential to ensure they are robust. Furthermore, specialized tests like lens shear testing can be performed on a push-pull testing machine to ensure the optical element is securely attached to the package. By validating these critical assembly steps, manufacturers can ensure the long-term performance and reliability of their lighting and optoelectronic products.

User Reviews

What users say about WBE

The high and low temperature test chamber runs with excellent stability and accurate control.

David Chen

We tested the thermal shock chamber, and it delivers consistent performance and durability.

Sophia Martinez

The push-pull and mechanical testing machines are precise, easy to operate, and reliable.

Michael Johnson

Their walk-in chambers and rapid temperature change units meet strict standards perfectly.

Emily Walker

The salt spray, rain, and aging test chambers provide reliable results and high protection.

James Anderson
Frequently Asked Question

Do you have any question?

The main tests performed by a push-pull testing machine include wire bond pull testing (to check the strength of wire-to-pad bonds), ball shear testing (to test the integrity of solder balls in BGA packages), die shear testing (to measure the adhesion strength of a semiconductor die to its substrate), and various other micro-force tests like tweezer pull or stud pull for specific components.

A push-pull testing machine is essential for semiconductors because it directly validates the reliability of the packaging process. A single faulty wire bond or a weak die attachment can cause a catastrophic failure of an entire integrated circuit. These machines provide the data needed for process control, quality assurance, and compliance with industry standards like MIL-STD-883.

A destructive pull test, the more common type, pulls a wire until it breaks to measure its ultimate bond strength. A non-destructive pull test, performed on a push-pull testing machine, applies a predetermined force (lower than the expected breaking strength) to 100% of the wires on a high-reliability device. This ensures all bonds meet a minimum strength requirement without destroying them.

The force range for a push-pull testing machine is typically very low, often from a few grams-force (gf) up to 100 kilograms-force (kgf). Different test heads and load cell cartridges are used to achieve high accuracy within specific ranges, such as 0-100 gf for fine wire pull testing or 0-100 kgf for die shear testing.

By providing immediate feedback on the quality of the bonding or soldering process, a push-pull testing machine helps engineers identify and correct process issues quickly. If bond strengths start to trend lower, it can indicate a problem with a wire bonder, a contaminated surface, or an incorrect parameter. Addressing these issues in real-time prevents the production of large quantities of faulty devices, thus improving overall yield.

Yes. WBE understands that modern electronics often involve unique package designs and components. We can develop custom tooling, workholders, and test routines for your specific push-pull testing machine application. Our engineering team works with clients to create tailored solutions for testing non-standard components and ensuring accurate, repeatable results.

Our updates and blog posts

The Production Line Problem: Why Good Designs Still Suffer Early Failures

Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.

The Ultimate Guide to Environmental Test Chambers

Explore the complete world of environmental testing. This guide covers the principles, applications, and selection criteria for various test chambers used to ensure product reliability.

A Buyer's Guide to Specifying Walk-in Environmental Chambers

Planning to buy a walk-in test chamber? Our guide covers the critical decisions you'll need to make, offering a detailed comparison of construction types and design features.

Get In Touch

Don't hesitate to contact with us

Sending your message. Please wait...